Vasopressors and Inotropes

Andrew Straznitskas, PharmD, BCCCP Clinical Pharmacist, Medical ICU NYC H+H/Bellevue

Adrenergic Receptors

Receptor	Location	Action	Effect
α1	Systemic Vasculature	Vasoconstriction	↑ SVR
Vasopressors			
β1	Myocardium	个HR	↑ CO
Inotropes		个contractility	
β2	Systemic Vasculature	Vasodilation	↓ SVR
Vasodilators			

Vasopressors and Inotropes

Norepinephrine (Levophed[®])

- Potent α effects with moderate β
 - Primary: Vasoconstriction = \uparrow SVR
 - Secondary: \uparrow cardiac contractility & HR = \uparrow CO
- Dose
 - 2-30 mcg/min
 - 0.05-0.5 mcg/kg/min
- Clinical Use
 - Clear drug of choice for septic shock
 - Mortality benefit demonstrated over Dopamine
 - Suggested drug of choice for undifferentiated and cardiogenic shock
- Notes
 - Potential rate limiting tachycardia/tachyarrythmias

Phenylephrine (Neosynephrine[®])

- Pure α agonist
 - Vasoconstriction = \uparrow SVR
 - Unopposed α effects can lead to significant ischemia
- Dose
 - 20-200 mcg/min
 - Bolus dose: 100-200 mcg Q 3-5 min
- Clinical Use
 - Septic shock in patients who do not tolerate norepinephrine
 - Anesthetic induced hypotension
 - Shock in patients with Aortic/Mitral Stenosis
- Notes
 - Least arrythmogenic
 - Potential for reflex bradycardia

Vasopressin (Vasostrict[®])

- Vasopressin receptors
 - − V_1 → Vasoconstricts vascular smooth muscle = \uparrow SVR
 - − $V_2 \rightarrow \text{Reabsorbs H}_20$ from renal collecting duct = $\downarrow \text{UOP}$
- Dose
 - 0.03 units/min
- Clinical Use
 - Adjunct to Norepinephrine in refractory shock
 - Does not provide morbidity/mortality benefit
 - Reduces Norepinephrine requirement
 - Patients with Aortic/Mitral Stenosis
 - Patients with Pulmonary Hypertension
 - Patients with GI Hemorrhage
- Notes
 - Preserved effect in severe acidosis
 - Not arrythmogenic

Epinephrine (Adrenalin[®])

- Potent α and β activity
 - Vasoconstriction = \uparrow SVR
 - \uparrow contractility & HR = \uparrow CO
- Dose
 - 1-20 mcg/min
 - 0.01 0.5 mcg/kg/min
- Clinical Use
 - Refractory shock, adjunct 2nd or 3rd line agent
 - May consider in patients with cardiogenic shock component
 - Drug of choice in anaphylaxis
 - Dose: 0.3 mg IM Use 1 mg/1 mL vial (or EpiPen[®])
 - Cardiac arrest
 - Dose 1 mg IV Use 1 mg/10 mL emergency syringe
- Notes
 - Increased arrythmogenicity
 - May cause significant hyperglycemia and lactatemia
 - Inhibition of insulin secretion
 - Promotion of glycogenolysis and inhibition of glycogen production

Dopamine (Inotropin[®])

- Dose dependent effect
 - D (2.5-5 mcg/kg/min): \uparrow renal blood flow and UOP
 - No effect on rates of renal impairment or recovery
 - $-\beta$ (5-10 mcg/kg/min): \uparrow contractility & HR = \uparrow CO
 - α (10-20 mcg/kg/min): Vasoconstriction = \uparrow SVR
 - Unclear relationship in clinical practice
 - Titrate according to patient response
- Clinical Use
 - Mostly fallen out of favor
 - ACLS Guidelines for management of symptomatic bradycardia as an alternative to pacing
- Notes
 - High arrythmogenicity
 - \uparrow myocardial oxygen demand

Dobutamine (Dobutrex[®])

- Potent $\beta_1 \& \beta_2$ with minimal α activity
 - \uparrow contractility & HR = \uparrow CO
 - Systemic vasodilation = \downarrow SVR
- Dose
 - 2.5 -20 mcg/kg/min
 - Usual inotropic range: 5-10 mcg/kg/min
- Clinical Use
 - Shock with \downarrow CO
 - Patients with decompensated HF
- Notes
 - May cause hypotension
 - Start with low doses and titrate up
 - If patient is hypotensive consider starting vasopressor (norepinephrine) first
 - High arrythmogenicity
 - Highest with doses > 10 mcg/kg/min
 - Increases myocardial oxygen demand

Milrinone (Primcor[®])

- Phosphodiesterase-3 inhibitor
 - − Increased intracellular cAMP \rightarrow activation of calcium channels
 - \uparrow contractility & HR = \uparrow CO
 - Systemic vasodilation = \downarrow SVR
- Dose
 - Loading Dose: 50 mcg/kg over 10 minutes
 - Not Recommended
 - 0.125-0.75 mcg/kg/min
- Clinical Use
 - Shock with \downarrow CO
 - Patients with decompensated HF
- Notes
 - Renal Elimination; Half-life of 2-3 hours
 - Hard to titrate for acutely unstable patients
 - May cause hypotension
 - Start with low doses and titrate up
 - If patient is hypotensive consider starting vasopressor (norepinephrine) first
 - High arrythmogenicity
 - Highest with doses > 0.5 mcg/kg/min
 - Increases myocardial oxygen demand

Isoproterenol (Isuprel[®])

- Pure β agonist
 - \uparrow contractility & HR = \uparrow CO
 - Systemic vasodilation = \downarrow SVR
- Dose
 - 1-10 mcg/min
- Clinical Use
 - Bradyarrhythmias, Heart Block, and Torsade de Pointes
- Notes
 - Generally restricted to Cardiology

Administration of Vasopressors

- Peripheral administration not recommended due to risk of infiltration and extravasation injury
- If no central access available, appropriate to start vasopressors peripherally
 - Short term peripheral use has been found to be of minimal risk
 - Use largest peripheral IV site possible
 - Use least concentrated formulation of whichever agent is most appropriate based on patient scenario
- Once patient stabilized, work to obtain central access
 - Ideally within 6-12 hours of starting vasopressors

Management of Extravasation

- Extravasation of vasopressors can result in severe ischemic injury and tissue necrosis
- In the event of extravasation, antidotes are available:
 - Phentolamine: α-blocker
 - Drug of choice
 - 5-10 mg diluted in 10 mL flush
 - Inject locally in affected area
 - Terbutaline: β-agonist
 - Use only if phentolamine unavailable
 - 1-2 mg diluted in 10 mL flush
 - Inject locally in affected area
 - Nitroglycerin ointment
 - Described for mild extravasation injuries
 - Apply to affected area

Key Points

- Ongoing assessment of fluid status and maintaining euvolemia is critical
- Hypoxia and acidemia may blunt effects of catecholamine vasopressors and inotropes
 - Vasopressin's effects are preserved
- Hypocalcemia may lead to inadequate response
 - Replete patients with hypocalcemia
 - Consider empiric calcium in patients receiving multiple blood transfusions

Questions

